This documentation is automatically generated by online-judge-tools/verification-helper
#ifndef H_segment_tree
#define H_segment_tree
#include <bits/stdc++.h>
using namespace std;
template <typename T>
class SegmentTree {
public:
int n;
T e;
vector<T> node;
function<T(T, T)> operation;
function<T(T, T)> process;
SegmentTree() {}
SegmentTree(int n_, T e_, function<T(T, T)> operation_,
function<T(T, T)> process_)
: e(e_), operation(operation_), process(process_) {
n = 1;
while (n < n_) n <<= 1;
node.assign(2 * n, e);
}
void build() {
for (int i = n - 1; i > 0; --i) {
node[i] = operation(node[i * 2 + 0], node[i * 2 + 1]);
}
}
void set(int idx, T v) { node[idx + n] = process(node[idx + n], v); }
void update(int idx, T v) {
idx += n;
node[idx] = process(node[idx], v);
while (idx >>= 1) {
node[idx] = operation(node[idx * 2 + 0], node[idx * 2 + 1]);
}
}
T query(int a, int b) { return query(a, b + 1, 1, 0, n); }
T query(int a, int b, int k, int l, int r) {
if (a >= r || b <= l) return e;
if (a <= l && b >= r) return node[k];
T c = query(a, b, 2 * k + 0, l, (l + r) / 2);
T d = query(a, b, 2 * k + 1, (l + r) / 2, r);
return operation(c, d);
}
T operator[](int idx) { return node[idx + n]; }
};
#endif
#line 1 "DataStructure/segment_tree.cpp"
#include <bits/stdc++.h>
using namespace std;
template <typename T>
class SegmentTree {
public:
int n;
T e;
vector<T> node;
function<T(T, T)> operation;
function<T(T, T)> process;
SegmentTree() {}
SegmentTree(int n_, T e_, function<T(T, T)> operation_,
function<T(T, T)> process_)
: e(e_), operation(operation_), process(process_) {
n = 1;
while (n < n_) n <<= 1;
node.assign(2 * n, e);
}
void build() {
for (int i = n - 1; i > 0; --i) {
node[i] = operation(node[i * 2 + 0], node[i * 2 + 1]);
}
}
void set(int idx, T v) { node[idx + n] = process(node[idx + n], v); }
void update(int idx, T v) {
idx += n;
node[idx] = process(node[idx], v);
while (idx >>= 1) {
node[idx] = operation(node[idx * 2 + 0], node[idx * 2 + 1]);
}
}
T query(int a, int b) { return query(a, b + 1, 1, 0, n); }
T query(int a, int b, int k, int l, int r) {
if (a >= r || b <= l) return e;
if (a <= l && b >= r) return node[k];
T c = query(a, b, 2 * k + 0, l, (l + r) / 2);
T d = query(a, b, 2 * k + 1, (l + r) / 2, r);
return operation(c, d);
}
T operator[](int idx) { return node[idx + n]; }
};