This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub granddaifuku/library
#ifndef H_segment_tree #define H_segment_tree #include <bits/stdc++.h> using namespace std; template <typename T> class SegmentTree { public: int n; T e; vector<T> node; function<T(T, T)> operation; function<T(T, T)> process; SegmentTree() {} SegmentTree(int n_, T e_, function<T(T, T)> operation_, function<T(T, T)> process_) : e(e_), operation(operation_), process(process_) { n = 1; while (n < n_) n <<= 1; node.assign(2 * n, e); } void build() { for (int i = n - 1; i > 0; --i) { node[i] = operation(node[i * 2 + 0], node[i * 2 + 1]); } } void set(int idx, T v) { node[idx + n] = process(node[idx + n], v); } void update(int idx, T v) { idx += n; node[idx] = process(node[idx], v); while (idx >>= 1) { node[idx] = operation(node[idx * 2 + 0], node[idx * 2 + 1]); } } T query(int a, int b) { return query(a, b + 1, 1, 0, n); } T query(int a, int b, int k, int l, int r) { if (a >= r || b <= l) return e; if (a <= l && b >= r) return node[k]; T c = query(a, b, 2 * k + 0, l, (l + r) / 2); T d = query(a, b, 2 * k + 1, (l + r) / 2, r); return operation(c, d); } T operator[](int idx) { return node[idx + n]; } }; #endif
#line 1 "DataStructure/segment_tree.cpp" #include <bits/stdc++.h> using namespace std; template <typename T> class SegmentTree { public: int n; T e; vector<T> node; function<T(T, T)> operation; function<T(T, T)> process; SegmentTree() {} SegmentTree(int n_, T e_, function<T(T, T)> operation_, function<T(T, T)> process_) : e(e_), operation(operation_), process(process_) { n = 1; while (n < n_) n <<= 1; node.assign(2 * n, e); } void build() { for (int i = n - 1; i > 0; --i) { node[i] = operation(node[i * 2 + 0], node[i * 2 + 1]); } } void set(int idx, T v) { node[idx + n] = process(node[idx + n], v); } void update(int idx, T v) { idx += n; node[idx] = process(node[idx], v); while (idx >>= 1) { node[idx] = operation(node[idx * 2 + 0], node[idx * 2 + 1]); } } T query(int a, int b) { return query(a, b + 1, 1, 0, n); } T query(int a, int b, int k, int l, int r) { if (a >= r || b <= l) return e; if (a <= l && b >= r) return node[k]; T c = query(a, b, 2 * k + 0, l, (l + r) / 2); T d = query(a, b, 2 * k + 1, (l + r) / 2, r); return operation(c, d); } T operator[](int idx) { return node[idx + n]; } };